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Duality theory
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Duality theory

Motivation for duality

Consider the following LP problem:

min −x1 −x2
s.t. 2x1 +x2 +x3 = 12

x1 +2x2 +x4 = 9
x1, x2, x3, x4 ≥ 0

It is easy to test that (x1, x2, x3, x4) = (5, 2, 0, 0) is a feasible
solution of the LP.

Question: can we prove that (5, 2, 0, 0) is an optimal solution
without solving the original LP?

The key is to find a suitable lower bound of the original LP.
How?
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Duality theory

Basic idea

Start

Goal

Primal

Dual
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Duality theory

Lagrangian multipliers to duality

Consider a linear programming problem (primal)

min : c′x

s.t. Ax = b

x ≥ 0

Let x∗ be an optimal solution. We introduce a relaxed problem in
which the constraint Ax = b is replaced by a penalty p′(b−Ax),
where p is the lagrangian multiplier vector. We are then faced
with the problem

min : c′x+ p′(b−Ax)

s.t. x ≥ 0
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Duality theory

Lagrangian multipliers to duality

Let g(p) be the optimal cost for the relaxed problem, as a function
of the multiplier vector p.

g(p) = min
x≥0

[c′x+ p′(b−Ax)] ≤ c′x∗ + p′(b−Ax∗) = c′x∗

Thus, each p leads to a lower bound g(p) for the optimal cost
c′x∗.

max : g(p)

s.t. no constraints

can be interpreted as a search for the tightest possible lower
bound for the primal, which is usually called the dual problem.
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Duality theory

Lagrangian multipliers to duality

g(p) = min
x≥0

[c′x+ p′(b−Ax)]

= p′b+min
x≥0

(c′ − p′A)x

Note that

min
x≥0

(c′ − p′A)x =

{
0, if c′ − p′A ≥ 0′;
−∞, otherwise.

In maximizing g(p), we only need to consider those values of p for
which g(p) is not equal to −∞. We therefore conclude that the
dual problem is the same as the another linear programming
problem

max : p′b

s.t. p′A ≤ c′
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Duality theory

Shortcut to write a dual problem for a primal

PRIMAL min max DUAL

≥ bi ≥ 0
constraints ≤ bi ≤ 0 variables

= bi free

≥ 0 ≤ bi
variables ≤ 0 ≥ bi constraints

free = bi

The dual of the dual is the primal!!!

If we transform the dual into an equivalent minimization problem
and the form its dual, we obtain a problem equivalent to the
original problem.
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Duality theory

An example for practice

min x1 +2x2 +3x3
s.t. x1 +3x2 = 5 (p1)

2x1 −x2 +3x3 ≥ 6 (p2)
x3 ≤ 4 (p3)

x1 ≥ 0
x2 ≤ 0

x3 free

max 5p1 +6p2 +4p3
s.t. p1 free

p2 ≥ 0
p3 ≤ 0

p1 +2p2 ≤ 1
3p1 −p2 ≥ 2

3p2 +p3 = 3

Chen Jiang Hang (Transport and Mobility Laboratory)Decision Aid Methodologies In TransportationLecture 2: Duality and Column generation10 / 43



Duality theory

Another way to write a dual problem, my experience

max 5x1 +6x2 +4x3
s.t. x1 +2x2 ≤ 1 (p1)

3x1 −x2 ≥ 2 (p2)
3x2 +x3 = 3 (p3)
x2 ≥ 0 (p4)

x3 ≤ 0 (p5)

Two rules to remember:

1 p′A = c′

2 if the sense of the problem is min, the lagrangian function
(only consider the DUAL×(RHS-LHS)) always tries to
provide a lower bound; if the sense of the problem is max,
the lagrangian function always tries to provide an upper
bound.
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Duality theory

Duality theorem

Week duality

If x is a feasible solution to the primal problem and p is a feasible
solution to the dual problem, then,

p′b ≤ c′x

Strong duality

Let x and p be feasible solutions to the primal and dual problem,
respectively, and suppose that p′b = c′x. Then, x and p are
optimal solutions to the primal and the dual, respectively.
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Column generation
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Column generation

Motivation to use column generation

Suppose that the number of columns is so large that it is
impossible to generate and store the entire matrix A in memory.

min : c′x

s.t. Ax = b

x ≥ 0

Observation:

1 Experience with large optimization problems indicates that,
usually, most of the columns never enter the basis, and we
can therefore afford not to ever generate these unused
columns;

2 From Simplex method’s point of view, at any given iteration,
only requires the current basic columns and the column which
is to enter the basis.
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Column generation

Motivation to use column generation

At any given iteration:

4♣ K♠ ?♣ ?♠ ?♦ · · · ?♥

Key question: how to evaluate the reduced costs (the points of the
cards in this analogous example) associated with all of the
nonbasic columns (there may be millions of them) and identify the
entering column?
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Column generation

The idea

Actually, we don’t need to figure out the list of reduced costs for
all the nonbasic columns. Instead, in order to identify the entering
column, it can be accomplish by solving another optimization.

min ci

where the minimization is over all column index i. In many
instances, the above optimization problem has a special structure:
a smallest ci can be found efficiently without computing every ci.
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Column generation

The basic steps of column generation

1 Identify a list of basic columns and initialize the set I which
contains the indices of all of the columns that have been
generated;

2 Solve the restricted problem to optimality by Simplex
method;

min{
∑
i∈I

cixi |
∑
i∈I

Aixi = b,x ≥ 0}

3 Based on the optimal basis matrix B, construct the reduced
cost formula ci

′ = c′i − c′BB
−1Ai. Note that the column Ai

usually cannot be expressed explicitly;

4 Solve min ci. If the optimal value is greater or equal to 0,
then terminate the algorithm. Otherwise, identify an index i∗

with ci∗ < 0 and dynamically generate a column Ai∗ and
add i∗ into I and proceed to Step 2.
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Column generation

A classic problem to use column generation

The cutting stock problem:

Chen Jiang Hang (Transport and Mobility Laboratory)Decision Aid Methodologies In TransportationLecture 2: Duality and Column generation18 / 43



Column generation

The cutting stock problem

Consider a paper company that has a supply of large rolls of
paper, of width W (assume positive integer). However, customer
demand is for smaller widths of paper; in particular bi rolls of
width wi, i = 1, 2, . . . ,m, need to be produced. We assume that
wi ≤W and is an integer. Smaller rolls are obtained by slicing a
large roll in a certain way, called a pattern. For example, a large
roll of width 70 can be cut into 3 rolls of width w1 = 17 and 1 roll
of width w2 = 15, with a waste of 4.
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Column generation

The cutting stock problem

In general, a pattern, say the jth pattern, can be represented by a
column vector Aj whose ith entry aij indicates how many rolls of
width wi are produced by that pattern. For example, the pattern
described earlier can be represented by the vector (3, 1, 0, . . . , 0).
For a vector (a1j , a2j , . . . , amj) to be a representation of a feasible
pattern, its components must be nonnegative integers and we
much also have

m∑
i=1

aijwi ≤W
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Column generation

The cutting stock problem

First step, set up column generation iteration starting point.
Actually, the initial basis matrix can be constructed in an trivial
way. For example, let W = 10 and the customer demanded small
roll widths are w1 = 3, w2 = 2. The following two choices are both
valid.

A1 =

[
1
0

]
,A2 =

[
0
1

]
or

A1 =

[
3
0

]
,A2 =

[
0
5

]
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Column generation

The cutting stock problem

Define the restricted problem:

min :

n∑
j=1

xj

s.t.

n∑
j=1

aijxj ≥ bi,∀i = 1, . . . ,m

xj ≥ 0,∀j = 1, . . . , n

Note that m is the types of small roll customers requested and n is
the number of patterns generated so far. Besides, in reality each
xj should be an integer but for better demonstration of column
generation, here we relax this requirement.
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Column generation

The cutting stock problem

Suppose now that we have a basis matrix B for the restricted
problem and an associated basic feasible solution, and that we wish
to carry out the next iteration for the column generation. Because
the cost coefficient of every variable xj is 1, every component of
the vector cB is equal to 1. Next, instead of computing the
reduced cost cj = 1− c′BB

−1Aj associated with every column
Aj, we consider the problem of minimizing (1− c′BB

−1Aj)
over all j. This is the same as maximizing c′BB

−1Aj over all j.

If the maximum is ≤ 1, all reduced costs are nonnegative and
we have an optimal solution.

If on the other hand, the maximum is > 1, the column Aj

corresponding to a maximizing j has negative reduced cost
and enters the basis.
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Column generation

The cutting stock problem

We usually call the problem to identify the column with negative
reduced cost min cj as the pricing problem. For cutting stock
problem, the pricing problem is shown below. Note that we define
p = c′BB

−1 which is known after solving the restricted problem.

max :

m∑
i=1

piai

s.t.

m∑
i=1

wiai ≤W

ai ≥ 0,∀j = 1, . . . ,m

ai ∈ Z,∀j = 1, . . . ,m
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Column generation

The cutting stock problem: an example

Suppose for the paper company, a big roll of paper is W = 218cm.
The customers of the company want:

44 small rolls of length 81cm;

3 small rolls of length 70cm;

48 small rolls of length 68cm.

That is,

w =

 81
70
68

 ,b =

 44
3
48


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Column generation

The cutting stock problem: an example

Step 1, to generate the initial basis matrix:

A1 =

 1
0
0

 ,A2 =

 0
1
0

 ,A3 =

 0
0
1


The first restricted problem is:

min : x1 + x2 + x3

s.t.

 1 0 0
0 1 0
0 0 1

 x1
x2
x3

 ≥
 44

3
48


xj ≥ 0,∀j = 1, . . . , 3
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Column generation

The cutting stock problem: an example

By solving the restricted problem, we can get
p = c′BB

−1 = (1, 1, 1). Therefore the first pricing problem is:

max : a1 + a2 + a3

s.t. 81a1 + 70a2 + 68a3 ≤ 218

ai ≥ 0,∀j = 1, . . . , 3

ai ∈ Z,∀j = 1, . . . , 3

The optimal solution is

 a1
a2
a3

 =

 0
0
3

 with optimal value 3 > 1.
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Column generation

The cutting stock problem: an example

The second restricted problem:

min : x1 + x2 + x3 + x4

s.t.

 1 0 0 0
0 1 0 0
0 0 1 3



x1
x2
x3
x4

 ≥
 44

3
48


xj ≥ 0,∀j = 1, . . . , 4

After solving, we can get p = (1, 1, 0.33).
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Column generation

The cutting stock problem: an example

The second pricing problem:

max : a1 + a2 + 0.33a3

s.t. 81a1 + 70a2 + 68a3 ≤ 218

ai ≥ 0,∀j = 1, . . . , 3

ai ∈ Z,∀j = 1, . . . , 3

The optimal solution is

 a1
a2
a3

 =

 0
3
0

 with optimal value 3 > 1.
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Column generation

The cutting stock problem: an example

The third restricted problem:

min : x1 + x2 + x3 + x4 + x5

s.t.

 1 0 0 0 0
0 1 0 0 3
0 0 1 3 0



x1
x2
x3
x4
x5

 ≥
 44

3
48


xj ≥ 0, ∀j = 1, . . . , 5

After solving, we can get p = (1, 0.33, 0.33).
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Column generation

The cutting stock problem: an example

The third pricing problem:

max : a1 + 0.33a2 + 0.33a3

s.t. 81a1 + 70a2 + 68a3 ≤ 218

ai ≥ 0,∀j = 1, . . . , 3

ai ∈ Z,∀j = 1, . . . , 3

The optimal solution is

 a1
a2
a3

 =

 2
0
0

 with optimal value 2 > 1.
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Column generation

The cutting stock problem: an example

The 4th restricted problem:

min : x1 + x2 + x3 + x4 + x5 + x6

s.t.

 1 0 0 0 0 2
0 1 0 0 3 0
0 0 1 3 0 0




x1
x2
x3
x4
x5
x6

 ≥
 44

3
48



xj ≥ 0,∀j = 1, . . . , 6

After solving, we can get p = (0.5, 0.33, 0.33).
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Column generation

The cutting stock problem: an example

The 4th pricing problem:

max : 0.5a1 + 0.33a2 + 0.33a3

s.t. 81a1 + 70a2 + 68a3 ≤ 218

ai ≥ 0,∀j = 1, . . . , 3

ai ∈ Z,∀j = 1, . . . , 3

The optimal solution is

 a1
a2
a3

 =

 1
0
2

 with optimal value

1.16 > 1.

Chen Jiang Hang (Transport and Mobility Laboratory)Decision Aid Methodologies In TransportationLecture 2: Duality and Column generation33 / 43



Column generation

The cutting stock problem: an example

The 5th restricted problem:

min : x1 + x2 + x3 + x4 + x5 + x6 + x7

s.t.

 1 0 0 0 0 2 1
0 1 0 0 3 0 0
0 0 1 3 0 0 2




x1
x2
x3
x4
x5
x6
x7


≥

 44
3
48



xj ≥ 0,∀j = 1, . . . , 7

After solving, we can get p = (0.5, 0.33, 0.25).

Chen Jiang Hang (Transport and Mobility Laboratory)Decision Aid Methodologies In TransportationLecture 2: Duality and Column generation34 / 43



Column generation

The cutting stock problem: an example

The 5th pricing problem:

max : 0.5a1 + 0.33a2 + 0.25a3

s.t. 81a1 + 70a2 + 68a3 ≤ 218

ai ≥ 0,∀j = 1, . . . , 3

ai ∈ Z,∀j = 1, . . . , 3

The optimal solution is [a1, a2, a3] = [2, 0, 0] with optimal value 1
which is a signal for us to terminate.
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Column generation

The cutting stock problem: an example

The optimal solution for the cutting stock problem is:

1

 0
3
0

+ 10

 2
0
0

+ 24

 1
0
2


with optimal value: 35.
Question: if the initial basis matrix chosen is

A1 =

 2
0
0

 ,A2 =

 0
3
0

 ,A3 =

 0
0
3


, then how many iterations you need to take?
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Column generation

Notes on column generation

The success of applying column generation relies on efficient
algorithms to solve the pricing problem, which is usually one of the
types:

1 Knapsack problem (e.g., the pricing problem of the cutting
stock problem is this type)

2 Shortest path problem

We will discuss these two problems in the coming lecture.
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Column generation

Notes on column generation

Question:

What if your optimization problem has numerous constraints but
reasonable number of columns, can you still applied column
generation method?

YES! Construct the dual problem of your original one. Note that
in the corresponding dual problem, you will have numerous
constraints. Based on the duality theory for linear programming
problem, you can solve the dual problem by column generation
instead.

Chen Jiang Hang (Transport and Mobility Laboratory)Decision Aid Methodologies In TransportationLecture 2: Duality and Column generation38 / 43



Column generation
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Column generation

Notes on column generation

Question:

If in an optimization problem, the number of columns and the
number of constraints are somehow “manageable”. In this case,
can we still use column generation method to solve it (if
necessary)?

For example, given the following problem,

min{c′x |Dx = b1,Fx = b2,x ≥ 0}
Define a polyhedron P = {x |Fx = b2,x ≥ 0}. Recall the
Resolution Theorem for polyhedra. P can be rewritten as

P =


p∑

i=1

λix
i +

q∑
j=1

θjw
j |λi ≥ 0, θj ≥ 0,

p∑
i=1

λi = 1


where {x1, · · · ,xp} are the extreme points and {w1, · · · ,wq} is
the set of extreme rays.
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Column generation

Notes on column generation

Therefore, we can reformulate the original problem as

min :

p∑
i=1

λic
′x

i
+

q∑
j=1

θjc
′w

j

s.t.

p∑
i=1

λiDxi +

q∑
j=1

θjDwj = b1

p∑
i=1

λi = 1

λi ≥ 0, θj ≥ 0

For real application, the number of both p and q can be huge.
Hence, we can adopt column generation method to solve the
reformulated problem. The basic idea shown here is called
Dantzig–Wolfe decomposition.
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